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ABSTRACT

One of the ways by which early human vision is sharply dis-
tinguished from machine vision is by the fact that the human visual
representation is strongly space variant and that the human system
builds up a representation of a scene through multiple fixations during
scanning. -

In this paper, we discuss three algorithms related to the '"endng
of a single scene from multiple frames acquired from a space variant
sensor.
1.) Given a se" of space-variant contour based scenes, with different
"fixation points', we show how to fuse these into a single, multi-scan
view, which incorporates the information present in the individual scans.
2.) We demonstrate an (attentional) algorithm which recursively exam-
ines the current knowledge of the scene, in order to best choose the next
fixation point, based on focusing attention in regions of maximum boun-
dary curvature. F1_ *
3.) We discuss a simple metric for evaluating convergence over scan-
path. This may be usdd to quantify the performance of (2) above, i.e. to
compare the performance of various 'attentional' algorithms.

Finally, we discuss this work i i the light o both machine and bio-
logical vision.
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Introduction
When we view a scene, we have the subjective impression that what we see is

stable and constant, both in position and resolution. However, this impression is far

from correct. If we try to read a newspaper that is slightly off-center ( see Fig.1), we

become aware that the very high resolution provided in the region of our fixation

(foveal projection) falls off rapidly toward the edges of our field of vision. The fact

that the human visual representation is strongly space variant implies that the human

system builds up a representation of a scene through multiple fixations during scan-

ning.

The space variant nature of the human visual system is well understood, at least

to the level of primary visual cortex. The threshold for visual acuity, stereo-acuity,

motion, and other psychophysical quantities scale at least roughly as the inverse of dis-
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tance from the fovea. There is general consensus[1, 2, 3] that the spatial representation

of the visual field I , at the level of the primary visual cortex, is approximated by a

complex logarithmic mapping[4]. Figure 1 and Figure 6 of this paper show natural

scenes processed by this form of mapping function. We are thus in a position to pro-

vide realistic estimates of the nature of a specific space variant imaging system: that of

the human.

In the present paper, we discuss three algorithms related to the "blending" of a

single scene from multiple frames acquired from a space variant sensor. We used con-

tour based scenes, rather than gray scale scenes, in order to focus attention on the

problem space variance, as opposed to segmentation. The following generic problems

are raised by considering a a space variant system:

1.) Given a series of space-variant contour based scenes, with different "fixation

points", how might one fuse these into a single, multi-scan view, which incorporates

the information present in the individual scans?

2.) How might one choose successive fixations points, in order to rapidly gather shape

dependent data? Is there a simple attentional algorithm for contour based scenes?

3.) How could one quantify the rate of convergence of such a system, as a function of

the number of scans? What is the rate of convergence suggested by such a metric? 2

In the present work, we do not address the classical issues of how the system (

human or machine) is to obtain knowledge of its motor state (see 5). Our intention

here is to discuss the image processing problem of blending together multiple scans,

obtained from a strongly space variant sensor, and the problem of choosing a "scan

1 In this paper, we do not discuss the detailed spatial architecture of primary visual cortex,
which would include details such as ocular dominance columns, orientation columns, etc. We
are only concerned here with the first order topographic structure of the human visual system,
as a model for space variant machine vision systems.

2 In addition to these purely computational issues, the human system has also needed to: 1.)
evolve systems of accurate motor control, 2.) provide information to the organism about the
current motor state ( i.e. direction of gaze). This aspect of the problem has been much dis-
cussed under the terms proprioceptive perception, efference copy, corallary discharge, etc.[5].
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path" which provides optimal information about the scene.

Another interpretation of the work described here might be made, entirely within

the context of machine vision. Assuming that a space variant sensor similar to a

human retina were available, it would be necessary to consider some of the issues dis-

cussed in the present paper: how should one choose a series of fixation points for such

a sensor, how would one blend the successive frames, and how could one place a

metric on the quality of this scanning process?

The space-variant image and boundary-angle function

We define the resolution at the point v of an image as the function R,(v), where p

is the spatial location of a fixation point and R is a monotonic non-increasing function

of Iv-pl. This is to say that R is proportional to the reciprocal of the minimal distin-

guishable distance ( i.e visual acuity). In the current context the exact specification of

R is not crucial; any R having the mentioned attribute can be used. The following dis-

cussion uses a function of the form -C, for v p, where c is a constant.

This definition might be applied to any gray-scale image ( see Fig. 1). In the

current application we consider only contour based images. This situation can arise

either naturally, when a scene is two-dimensional and consists only of contours, or

artificially, after an edge-detection mechanism has been applied to an image of a com-

plex three-dimensional scene (segmentation).

Boundary contour descriptor

In applications in which a one-dimensional representation of contours is desired,

it is customary to use the boundary-angle function e(l), which is the angle of the

tangent to the contour, as a function of the arc-length unit 1. In the current application,

since we have discrete points connected by line segments (i.e polygons) , we use the

representation e(l), which is the difference between two consecutive angles of the

polygon. This one-dimensional representation of contours is most useful in shape-
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recognition tasks, where it is further processed by a Fourier transform to yield the

Fourier descriptors (FDs) of the contour [6]. There are also some indications that the

FD of a shape might be useful as a shape descriptor in physiological studies of the pri-

mate visual system[7].

We apply, spatial-variant resolution to both the image of the contour in the x/y

plane and to the boundary-angle 0() representation of it, as explained below (see also

Figure 2).

1) The original contour is represented by line segments between the points {Uj, i=lk.

We assume that the distance between these points represents the highest possible reso-

lution of the "viewer."

2) A new contour is defined by a fixation point: Given a fixation point p, and a con-

tour point Uj, the value of R,(Ui) determines the next point U. Thus, starting at U0, this

procedure yields a contour whose points are a subset of the original points.

3) The boundary angle of the new contour, 0p(Ui) , ie{1 kj, is obtained. To allow

reconstruction of the original image, we also keep the resolution value R (U) for each

Ui.

In the x/y plane, variable resolution produces a detailed image near the fixation

point and a "blurred" image away from the fixation point. In the boundary-angle

representation, the neighborhood of the fixation point is properly described, while other

areas retain only smoothed, low-frequency details. The parameters used in this work

yield a ratio of 1:10 between the full resolution image and a single space-variant view,

which is in good agreement with the functional form of human visual acuity 3.

3 One recent estimate of primate magnification factor[l] suggests that there is a 10:1 de-
crease in spatial resolution of a stimulus between the fovea and five degrees of eccentricity.
This is a reasonable "viewing aperture" for shape perception. Note that a 10:1 (linear) change
corresponds to a 100:1 area change, and that this area change is a more relevant index of "data
compression".
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Blending boundary-angle functions and images

For a given fixation point, there exists a corresponding representation of the origi-

nal contour. Several fixation points {p=p ... p} produce different representations of

the same contour. This situation is shown in Figure 3, in which images are viewed

from several different points. Although the boundary-angle function e,(Ui) is quite

detailed near the corresponding fixation point, it just roughly approximates the original

boundary-angle function in all the other areas.

Because resolution depends only on the distance between a given point and the

fixation point, and because the most detailed boundary functions (or images) are

obtained for high-resolution areas, an appropriate blending scheme should use the

"best" of each view. The only information the blending scheme needs is the resolution

associated with each point in the subcontour, which is kept when the subcontour is cal-

culated. Thus, the reconstructed boundary-angle function is

e(U) = e$<Uv)

such that

R,(UI) = maxpp, ... P {Rp(Ui)}.

The reconstructed function @*(1) is an approximation to the original ey). This

approximation depends on the number of fixation points and their location. A more

elaborate blending scheme might also depend on the "scanpath" or sequence of fixation

points humans select when viewing a given scene[8].

Choice of scan path: an "attentional" algorithm

Although early vision and artificial intelligence (late vision?) have received a

great deal of attention recently, a great intermediate area exists which has received lit-

tle study in this context, and that is the subject of "attention" itself. A single scan

provides partial information about a scene. Assuming that a unified representation of



the scene can be extracted from successive scan, we must address the problem of

locating the fixation points,in such a way as to provide maximal information to the

imaging system. This represents an ill defined problem, as difficult issues relating to

context and goal direction are implied by it. However, little advantage can be gained

from a space variant system without providing an attentional algorithm. In the follow-

ing, we will discuss a simple candidate for attentional choice of successive fixation

points.

In psychophysical contexts, the nature of visual scanning has been extensively

explored (e.g., 9). In general, fixation points tend to cluster around sharp edges, ends

of lines, and locations where some "unpredictable" change takes place. Although

most existing research considers only the question of the location of the fixation

points, some of the literature does pay attention to the temporal ordering of these

points, which is termed the "scanpath"[8].

In our case, the scene consists of contours. The curvature of the contours is very

likely to be a prime fixation-point "attractor", since large curvature represents rapid

rate of change of boundary orientation. We can represent the curvature in terms of a

boundary-angle function, indicating areas of high curvature by corresponding peaks in

the function. A simple form of attentional algorithm, then, consists of the following

steps:

1) Chose (randomly, or by any method) an initial fixation point.

2) Calculate the boundary-angle function according to the current fixation point.

3) Select the next fixation point according to the maximum of the boundary-angle

function &p(Uj).

4) Keep the boundary angle function and the corresponding resolution values. Keep a

reference point in the current fixation, that will be associated with a point in the next

fixation.

5) Blend the views and the boundary angle functions to yield a single view/function.
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6) Go to step 2, until "convergence" (see below).

Such a procedure is shown in Figure 4. The fixation points in this figure seem

plausible in comparison with the points that one would likely select without using the

algorithm. tlcvever, the algorithm has one drawback. In cases where several high

value- -, the boundary-angle function cluster together, the algorithm picks several

fixation points at almost the same place. Because the scans obtained from adjacent

fixation points do not differ much, and because the foveal area can cover several

points of high curvature, this clustering of points is redundant.

In order to remove the redundancy, we modify the algorithm (in step 3) by con-

sidering &(U)W(U,) instead of @(ui). The weight function W(U) can be used to enhance

(or mask) selected features. If W is chosen such that it equals 1 everywhere except for

a neighborhood of the fixation point where it vanishes, the redundancy problem is

solved. In other words, after a fixation point is selected, the relevant foveal area (i.e.,

the area immediately surrounding the fixation point, where the high resolution still

holds) is not counted when the algorithm searches for the next-higher value. Figure 4b

shows the results of this approach.

One might also select W to be _, thus emphasizing "remote" features rather thanR'

"close" ones. Finally, W might contain some random fluctuations, in order to avoid the

possibility of being "trapped" between two features.

The algorithm needs a reference point that is shared between each two succesive

fixations: this is necessary when the views, or the boundary angle functions, are

"tailored" together.
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Convergence and norms

Because our figures consist of simple contour drawings, it is easy to define a

norm that compares composite space-variant scenes after n scans with the original

high-resolution scene. A reasonable choice for this norm is a least-squares measure of

the two boundary-angle functions. Thus, let A. represent the difference between the

full-resolution scene and the composite scene after the incorporation of the n" fixation

point : A , = U - C.

Using this norm, it is possible to define the convergence rate as a function of the

scanpath. Thus, for a sequence of fixation points PP2,...p,,, we define the rate of con-

vergence for the scan path at point n, as Aj-A,,_1 . This method is suitable for the pur-

pose of the algorithms evaluation or for calibration, when we have access to the full

resolution contour. However, in a "real-time" situation (i.e in robotic vision), the full

resolution image is not necessarily available. Thus, we can define A. as IC. - C,,_I, and

base the "convergence" decision on it (see Fig. 5). If one thinks of n as a time variable

then this measure indicates the "rate" of error-reduction.

Thus, one algorithm for adding scanpaths might be based on the addition of a

new point which, among all the possible fixation points, maximizes the above "rate"

of convergence. Conversely, the addition of new points becomes unecessary when no

points can be found that significantly improve the rate of convergence. The algorithm

we propose rapdily converges: it is monotonic, in the sense that only "better" resolu-

tion points are introduced, and it is bounded by the original set of points which consti-

tutes the object. Figure 5 shows an example of an aircraft silhouette which is scanned

by this algorithm, with a plot of convergence based on the latter method described

above. It is clear that there is rapid convergence to an accurate representation of the

boundary of the figure. It is interesting to note that [ 8] report that humans typically

view scenes with perhaps 3 - 8 scans; our algorithm also converges quite rapidly, in

this case in which parameters of space variance derived from human vision have been
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used.

In more general cases, however, the choice of a norm is likely to be quite

difficult. In the general case, both the attentional algorithm and the norm used to

evaluate its success would likely be dependent on past experience, the goal-directed

state of the imaging entity, and the full context of the current task. In lieu of engaging

in this full-blown algorithmic study of visual attention, we propose that the simple cur-

vature based norm and scanning algorithm outlined above provides an initial step in

the direction of understanding visual attention, and is one which is optimal in those

situations in which a value-neutral estimate of boundary curvature is the desired infor-

mation.

Implication of space variant image processing to gray-level images.

Though we address mainly contour-based images in this work, it might be of

interest to point out its application to gray-level images, especially from the aspect of

"data compression".

The human visual field subtends roughly 100 x 100 degrees[10] , with a max-

imum resolution of about 1 minute of arc ( foveal). Using a space invariant sensor (

e.g. conventional CCD camera), one would have to resolve 6000x6000 samples ( 1

minute of arc x 100 degrees in each direction). In order to achieve this performance,

one would have to sample at 2-3 times this resolution, in each dimension. An image

of 16000x16000 would provide this performance, but would extend close to the giga-

pixel range in size.

We have experimentally demonstrated this estimate by digitizing4 a conventional

eye-chart, at a distance of 20 feet, using a wide angle (fisheye) lens, which recorded

from about 80 degrees of field. Figure 6 shows the "full scene", and a highly

4 We used a conventional NTSC frame grabber, at 480x525 resolution, together with a polar
coordinate mosaic technique[ll] to produce this simulation.
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magnified detail of the eye-chart, at the center. We continued to magnify the scene.

until the 20/20 line of the eye-chart was visible ( indicating a resolution of about 1

minute/arc). We calculate that this occured at an effective sampling resolution of

16,0000x16,0000 pixels.

Although both of the previous estimates are ad-hoc, they agree well enough to

suggest that the effective resolution of a single scan of the human system is equivalent,

were it recorded by a space invariant system, to a 1/4 giga-pixel image. Now, this esti-

mate of 1/4 giga-pixel is based on the use of a constant resolution system, which

extended over 100x100 degrees, at full visual acuity. In fact, we simulated the loga-

rithmic structure of the human visual system, and our simulated image occupied only

about 16000 pixels (see figure 6). Naturally, we only obtained high resolution over a

small "foveal" representation with this simulation; in order to use this approach

effectively, multiple scans would need to be performed. However, with a relative data

compression of about 16,000 : 1 , we can afford to perform the scanning process over

a number of fixation points. Even 16 sucessive fixations would yield an effective

1000:1 data compression relative to a constant resolution system, provided that one

obtained a satisfactory representation of the image regions of interest.

Summary

Space variant imaging has been little explored in the context of machine vision,

but is a major area of interest in the context of biological vision. Space variant imag-

ing provides a number of advantages, and difficulties, with respect to conventional

space invariant systems. One advantage is that very large fields of view can be

covered, and very high resolution can also be provided.This leads to a form of image

data compression which can be extremely large. However, a number of algorithmic

difficulties are introduced by considering strongly space variant systems. Attentional

algorithms are required to make effective use of the small high resolution "fovea",

while other algorithms are required to "fuse" successive space variant scans.



In the present paper, we have provided preliminary solutions to each of these

issues. Using our algorithms, we obtain satisfactory convergence, for reasonable

parameters of space variance derived from human vision, over a small number of scans

(perhaps 3-5 scans).

The possibility that space variant sensors ( e.g. CCD's) may become available for

applicaion in machine and robotic vision should provide some motivation to begin

studying the issues which such a sensor would provide. Perhaps the possibility that

some of the high performance of the human visual system derives from its use of a

space variant architecture may provide some impetus to develop such a sensor.

. . . ......... . . . . . . - = ... ,.. ,,. ,,,i~llllu I l I I I I I I I
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Figure Captions

Figure 1. Figure IA simulates six successive scans of a newspaper, using a corti-

cal map function derived from primate data[6] ,a reading distance of about twenty cen-

timeters, and about 1.5 degrees of visual field on each side of the fixation point. Each

of the small "bow ties" represents the cortical "image" of a section of newspaper print.

Thus, the first frame is fixated on the letter "o" in the word "roaches". There are two

"bow ties" representing the left and right visual fields. The newspaper is then scanned,

and the corresponding cortical "images" are presented in the figure. Note the strong

space variance, even for the central few degrees of visual field.

Figure 1B shows these six scans projected back to the visual field, and "fused" into a

single scene[13]. The region of text scanned, which read " roaches don't die..", and

too some extent the lines above and below this line, are seen clearly, but there is a

rapid loss of detail in the text regions which are not close to the scanned text. Figure 6

of this paper shows a wide angle simulation of the human visual field and cortical

image.

Figure 2. A: Images (left) and their boundary-angle functions (right). Top: the original

contour (black silhouette) and its boundary-angle function. Bottom: the image as it is

"viewed" from the fixation point (indicated by a star), with space-variant resolution.

The tail of the airplane, being fairly far from the fixation point, is described very

roughly. Therefore, the boundary-angle function bears only a rough resemblance to

the original function.

B: A scene consisting of several planes sillhouetes (a), as it is "received" from

different fixation points (b-d). The fixation points are depicted by an asterix. The ori-

ginal airplane silhouette consists of 243 points, and the space-variant silhouettes aver-

age 5 points (for the less detailed ones) to 40 points (for the highly detailed).

Figure 3. A: View of a triangle from three fixation points. The contour of the original
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triangle (top) is seen from three fixation points, each in the neighborhood of a particu-

lar vertex. These views are indicated by the corresponding boundary-angle functions.

For each fixation point, only the closest vertex and itsneighborhood are detailed, while

the other vertices are approximated roughly. The reconstructed boundary-angle func-

tion (bottom) consists of the "best" contribution from each space-variant view.

B: a silhouette of an airplane, viewed from three fixation points, selected ( by hand)

because they are near areas containing many details. Details as in A.

Figure 4. A: Images (left) and the corresponding boundary-angle functions (right).

The top row shows the original image and function; the next three rows represent three

fixation points (denoted by small stars on the images), and the bottom row shows the

integrated image and function. The fixation points, which are selected automatically,

are the spatial locations that correspond to the three largest values of the original

boundary-angle function (denoted by bars under the function).

B: Results of the modified algorithm. The fixation points are chosen by .the max-

imum of
R(Uj)

Figure 5. Converging rate of the algorithm, as depicted by the difference A. between

successive blended figures. Left: blended figures after 1,2,3..8 fixation points. Right: A.

versus number of fixation points. A, is the mean square error between two succesive

figures, and is normalized to [0,1].

Figure 6. Figure 6A shows a wide angle fish eye view of a scene in the hall of our

laboratory. A ladder is to the right, an eye chart is in the very center of the frame C

almost invisible). The original versi6n of this scene was digitized to an effective reso-

lution of 16000x16000 pixels by a polar coordinate mosaic technique. A "blow-up" of

the central region of this original frame is shown in figure 6B. This is an eye-chart,

and the distance to the chart was twenty-feet. In the origiial, line 7 of the chart could

be easily read, indicated an effective "acuity" of 20130, or about 1.5 minutes of arc.
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The purpose of this work was to simulate a wide angle scene (about 100 degrees),

roughly comparable to human vision, at human visual acuity. Figure 6C shows this

scene, blurred by a space variant filter which is modeled after human visual acuity.

Figure 6D shows the image of 6A, modeled in terms of a complex logarithmic

model[7] of human visual cortex. The eye-chart occupies almost half of the surface of

visual cortex, although it occupies a tiny fraction of the original scene. The ladder, and

the windows of the original are compressed to almost the same size as the centrally

fixated letters of the eye-chart. This illustrates the tremendous space variant compres-

sion of human vision. Variations in linear size of about 1002:1 ( 104 in solid angle)

occur from the center to the periphery of the human visual system.
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